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Microbes numerically dominate aquatic ecosystems and play key roles in the
biogeochemistry and the health of these environments. Due to their short generations
times and high diversity, microbial communities are among the first responders to
environmental changes, including natural and anthropogenic disturbances such as
storms, pollutant releases, and upwelling. These disturbances affect members of the
microbial communities both directly and indirectly through interactions with impacted
community members. Thus, interactions can influence disturbance propagation through
the microbial community by either expanding the range of organisms affected or buffering
the influence of disturbance. For example, interactions may expand the number of
disturbance-affected taxa by favoring a competitor or buffer the impacts of disturbance
when a potentially disturbance-responsive clade’s growth is limited by an essential
microbial partner. Here, we discuss the potential to use inferred ecological association
networks to examine how disturbances propagate through microbial communities
focusing on a case study of a coastal community’s response to a storm. This approach
will offer greater insight into how disturbances can produce community-wide impacts on
aquatic environments following transient changes in environmental parameters.

Keywords: interaction networks, disturbance, phytoplankton, anthropogenic, storms

MICROBES AS IMPORTANT RESPONDERS TO ECOSYSTEM
CHANGES

Most people and development reside near water bodies, so human activities profoundly affect
both freshwater and marine ecosystems (Vitousek et al., 1997). In these aquatic environments,
microbes are the numerically- and often the biomass-dominant organisms, thus how they respond
to anthropogenic impacts determines both ecosystem health and biogeochemical rates. Although
a large body of research explores microbial responses to long-term human alteration of the
environment (e.g., climate change, ocean acidification), here we focus on pulse disturbance events
that disrupt “ecosystem, community, or population structure and [change] resources, substrate
availability or the physical environment” (White and Pickett, 1985). High levels of diversity and
short generation times make aquatic microbes a sensitive model system to explore disturbance,
but also complicate tracking the impacts and progression of disturbance. The wide range of
pulse disturbances affecting aquatic environments including storms, snowmelt, mixing/upwelling,
and chemical or sewage spills allows microbial ecologists to probe community responses to
environmental changes.
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In general, microbial communities are not resistant, which
is defined by Allison and Martiny (2008) as the degree to
which microbial composition remains unchanged in the face
of disturbance. This low resistance is likely due to the wide
range of genetic and physiological targets present in diverse
microbial communities as well as microbes’ short generation
times, which allow observation of both positive (increased
growth) and negative (death, impaired growth) responses.
Following a disturbance, community resistance and resilience
are generally determined by comparing community composition
at specific time points (Shade et al., 2012). A metric of
community recovery, microbial resilience is generally defined
as a return to the initial community composition (Allison
and Martiny, 2008; Shade et al., 2012). However, aquatic
microbial communities are highly dynamic and continually
change in response to seasonal environmental variables (e.g.,
light and temperature) or subsequent disturbances (Chow et al.,
2013; Needham et al., 2013; Yung et al., 2015). Thus, we
define the resilience of an aquatic microbial community as
the rate at which the community composition returns to a
non-disturbed state following a disturbance. This definition of
resilience requires understanding the disturbance-independent
temporal dynamics of microbial communities. Although marine
microbial communities exhibit regular seasonal patterns at
monthly timescales (Fuhrman et al., 2006; Gilbert et al.,
2012; Giovannoni and Vergin, 2012), high resolution and
repeated annual sampling reveals shorter-term and inter-annual
variability at the days to weeks time scale of disturbance
responses (El-Swais et al., 2015), complicating differentiation of
disturbance responses from annual patterns and stochasticity.
However, even if the seasonal community trajectory is known,
challenges to measuring microbial responses to disturbance
include confounding factors such as unrelated changes in
environmental variables, stochasticity in response and recovery,
dispersal limitation, genomic evolution to become resistant to
disturbances, and microbial interactions with other organisms
(Shade et al., 2012; Nemergut et al., 2013). We propose to
begin addressing the importance of microbial interactions to gain
new insights into the mechanisms underlying the resistance and
resilience of microbial communities.

MICROBIAL INTERACTIONS IN
COMMUNITY ASSEMBLY

As identifying the drivers of microbial community composition
is complex, most investigators first consider environmental
selection, and generally secondarily address other aspects
of community assembly: dispersal, drift (stochasticity), and
diversification (mutation; Vellend, 2010; Hanson et al., 2012;
Nemergut et al., 2013). However, dispersal may limit the viable
population present even when conditions favor growth (Caporaso
et al., 2011; Hanson et al., 2012) or alternately, environmental
changes may not persist long enough for viable cells to respond
(Hutchinson, 1961). An emphasis on deterministic processes
also ignores the role of stochasticity in community assembly and
the potential for communities with different compositions to
carry out the same processes at the same rates (e.g., functional

redundancy; Werner et al., 2011; Bissett et al., 2013; Hellweger
et al., 2014; Zhou et al., 2014). Further, microbial genomes
evolve in response to disturbance; they can develop resistance to
disturbances such as antibiotics or heavy metals, alter metabolic
capabilities, and change physiological niche width (Riehle et al.,
2003; Davies and Davies, 2010). Althoughmicrobial communities
are shaped by a combination of selection, drift, dispersal and
evolution, there is value in addressing subsets of these factors,
here we focus on selection via biological interactions following
disturbance.

Microbial ecology research currently emphasizes the role
of interactions in the community response to environmental
changes and disturbances (Faust et al., 2012; Bissett et al., 2013;
Fuhrman et al., 2015). Although some examples of relationships
between specific taxa and environmental variables exist (Field
et al., 1997; Johnson et al., 2006; Yung et al., 2015), interactions
between aquatic microbes have not been well explored. Even
for predation by viruses and grazers, one of the best studied
microbial interactions, much still remains to be discovered about
the interaction specificity (Sullivan et al., 2003; Apple et al.,
2011). Furthermore, the nature of biological interactions may be
dictated by characteristics of dominant aquatic bacteria; the most
abundant marine populations (e.g., Pelagibacter, Prochlorococcus)
are known for their streamlined genomes, small cell sizes, and
efficient use of resources (Giovannoni et al., 2014). Some of the
evolutionary success of these organisms may be due to their
conservation of limited resources by shedding genes encoding
critical functions and outsourcing these functions to other
members of the community (Black Queen Hypothesis; Morris
et al., 2012). For example, both Pelagibacter and Prochlorococcus
have lost the gene for catalase which protects cells from
hydrogen peroxide; as hydrogen peroxide diffuses through cell
membranes, other members of the microbial community can
protect catalase non-producers (Morris et al., 2011, 2012). Yet
aquatic organisms with complex genomes have also evolved
required interactions with other organisms; many eukaryotic
algae have a B12-dependent methionine synthase rather than
the B12-independent version, despite the fact that B12 is only
synthesized by prokaryotes. This suggests that interactions with
other organisms evolve due to net ecological advantage rather than
solely genome streamlining.

Although outsourcing key requirements may be ecologically
advantageous, long distances between cells, on average ∼100 µm
(Hunt et al., 2010), may exclude specific types of biological
interactions for planktonic organisms such as syntrophy where
physical coupling allows efficient transfer between cells (Boetius
et al., 2000; Malfatti and Azam, 2009). For truly free-living
organisms, interactions likely involve diffusible compounds,
suggesting that interaction partners may not be highly specific
or involve complex regulation. Experimental evidence supports
complementation of lost capabilities by non-specific interaction
partners: a range of reduced sulfur sources can be used by
SAR11 (Tripp et al., 2008) and many bacteria can provide B12
for auxotrophs (Croft et al., 2005). Additionally, some obligate
relationships, at least in artificial laboratory conditions, do not
involve regulation or signaling (Durham et al., 2015), while others
are regulated (Kazamia et al., 2012), suggesting a number of
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potential strategies for interactions. Although outsourcing key
functions is thought to be evolutionarily adaptive, interactions
also incur costs: B12 additions have been shown to stimulate
phytoplankton, implying that an interaction limits algal growth
(Sañudo-Wilhelmy et al., 2006; Bertrand et al., 2007). While
experimentally-verified interactions between microbes remain
rare, the success of aquatic organisms may stem at least
partially from outsourcing key functions. Thus, increasingly,
microbial ecologists are incorporating interactions into our
understanding of microbial communities, including interaction-
mediated transmission of disturbance, resistance, and resilience.

USING ASSOCIATION NETWORKS
TO EXPLORE DISTURBANCE

In general, microbial interactions cannot be directly observed,
thus ecological relationships are instead inferred based on
environmental observations of co-occurrence patterns and
synchronous population dynamics (Ruan et al., 2006; Steele et al.,
2011; Faust et al., 2012). Patterns of microbial relative abundance
obtained from communities sampled over spatial or temporal
gradients are used to generate correlation-based association
networks of potential interactions between operational taxonomic
units (OTUs) and between OTUs and environmental variables
(Barberan et al., 2012; Faust et al., 2012; Fuhrman et al.,
2015). These correlations are interpreted to capture biological
mutualisms such as cross-feeding and exchange of metabolites
(Kazamia et al., 2012; Morris et al., 2012), functional redundancy
(Eiler et al., 2012; Needham et al., 2013), or antagonism
through competition or predation (Pernthaler and Amann,
2005). In addition to the well-known biases of DNA extraction,
PCR amplification and in inferring patterns of organismal
abundance from library relative abundance data (Polz and
Cavanaugh, 1998; Acinas et al., 2004; Friedman and Alm, 2012),
association networks also suffer from a number of network-
specific limitations. First, association networks assume that 16S
rRNA-based OTUs are ecologically coherent in spite of known
microdiversity (Hunt et al., 2008) and physiologically identical
under all environmental conditions, e.g., does not account
for phenotypic plasticity based on environmental conditions
(Nemergut et al., 2013; Worden et al., 2015). Second, associations
may serve as proxies for specific environmental conditions or
niches rather than indicating true interactions (Fuhrman et al.,
2015). Finally, metrics of association strength are not standard
and depend on the metric chosen, number of samples, taxa
relative abundance, beta diversity, and data normalization (Ruan
et al., 2006; Faust et al., 2012; Friedman and Alm, 2012; Berry
and Widder, 2014). Currently, this field also lacks methods to
add additional support for interactions such as observed physical
associations to networks (Malfatti and Azam, 2009; de Vargas
et al., 2015). While acknowledging the limitations of correlation-
based association networks, we believe this technique has the
potential to inform our understanding of aquatic microbial
community dynamics.

Recently, association networks were employed to predict
the bacterial response to disturbance (Bissett et al., 2013);
expanding on this work, we propose to use network approaches

to quantitatively examine the importance of interactions in
altering the taxa affected by disturbance. Of particular promise
are techniques developed in information technology and social
learning, where interactions transmit signals between nodes,
much in the same way that initial disturbance-induced changes
in an OTU’s abundance may in turn affect the abundance of
its interaction partners at later time points. One technique to
look at disturbance transmission, information flow analysis can
model the transmission of disturbance through the interaction
network using the interaction strength and considering all
possible paths in a network (Missiuro et al., 2009). Information
flow analysis accounts for the strength of inferred interactions,
enabling prediction of how changes in the relative abundance
of a specific organism or value of an environmental variable
will affect the microbial community, and thus provides a metric
of predicted community resistance. Additionally, network-based
diffusion analysis could be used to determine quantitatively
whether association networks help to explain the propagation of
disturbance through the community (Franz and Nunn, 2009).
Operationally, association networks would be used to predict
the temporal dynamics of microbial community composition
following disturbance. The effects of disturbance on the rest
of the community (changes in OTU relative abundances) can
be predicted using information flow analysis. This predicted
community composition would be compared to the actual
community composition following a disturbance and community
changes predicted from a randomized network generated by
preserving the association network topology but repeatedly,
randomly assigning OTUs to network nodes. Thus if the
association network’s inferred interactions are truly important
in the community’s disturbance response, the true association
network should more closely match the observed community
responses compared to a set of randomized networks. These
methods will quantify the importance of interactions and predict
community responses to specific environmental conditions,
enhancing our understanding of the role interactions play in
disturbance.

Although these techniques are potentially powerful methods
to track community responses to disturbance, there are a
number of logistical considerations in using association networks
to follow the propagation of disturbance through microbial
communities. First, network-based analyses require large datasets
both pre- and post-disturbance synoptic with community changes
to develop an association network and track the disturbance
response, respectively. As disturbance-responsive taxa are often
rare, they may not be well-represented in association networks
which generally require taxa to be present in most samples
(Shade et al., 2014). Moreover, taxa which can respond quickly
to environmental changes may exhibit fewer, or different
types of biological interactions than the streamlined genome
oligotrophs which dominate many aquatic environments (Polz
et al., 2006). Additionally, microbial community composition,
generally measured using small subunit ribosomal RNA genes,
may not be sufficiently sensitive to detect a disturbance response
due to the time for cells to reproduce or predation of responsive
taxa, necessitating the use of alternative metrics such as activity
measurements (Berga et al., 2012; Hunt et al., 2013). Finally,
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dispersal may limit the response of taxa even under conditions
which favor growth. With the relatively short time scales of
pulse disturbances, it may be necessary to include prior relative
abundance in predicting an OTU’s potential responsiveness to
disturbance. With all of these caveats in place—we suggest first
studying time periods when disturbances are predicted to produce
large changes in the microbial community.

Theoretically, anthropogenic disturbances should have the
greatest impact when highly-connected taxa change their
abundance or activity. Research on networks has shown that
disturbances that target central “keystone” nodes dramatically
alter the rest of the network (Albert et al., 2000; Montoya
and Solé, 2002). Ecology posits the existence of keystone
taxa—which may impact multiple members of the community
through either positive interactions (production of substrates
or co-factors utilized by other microbes) or competitive
exclusion, predation, disease, or habitat modification (Power
et al., 1996). Keystone organisms are often defined as those
with disproportionate ecological roles given their relative
abundance (Power et al., 1996); however as microbial ecology
lacks techniques to remove specific OTUs and quantify the
ecosystem effect, here we operationally define keystones as taxa
located at the hubs of association networks with an increased
number of network connections relative to abundance (high
mean degree); however, other metrics take into account the
betweenness and closeness centralities of the node as well as
strength of interactions (Missiuro et al., 2009; Bissett et al.,
2013; Berry and Widder, 2014; Peura et al., 2015). Yet many
network hubs may be artifacts of network construction rather
than true keystone taxa (Berry and Widder, 2014). Although the
concept of keystone taxa has not been thoroughly explored in
microbial ecology, previous studies have suggested that microbial
community activity and succession is driven by interactions
with phytoplankton (Azam et al., 1983; Kent et al., 2007).
The factors that promote phytoplankton growth are generally
well known: light, inorganic nutrients, specific temperature
ranges; and phytoplankton are the dominant primary producers
in most aquatic systems. These photosynthetic organisms
shape the microbial community through primary production,
but at the same time outsource the production of essential
functions (e.g., hydrogen peroxide detoxification) to the
broader community (Cole, 1982; Kazamia et al., 2012; Morris
et al., 2012). Other taxa interact with phytoplankton through
photosynthate consumption, degradation of detrital material,
symbiosis, and predation (Croft et al., 2005; Stocker et al.,
2008; Morris et al., 2011; Teeling et al., 2012; Durham et al.,
2015). Finally, phytoplankton serve as hubs in association
networks (Steele et al., 2011) and could function as keystone
organisms in aquatic ecosystems. While the ecological role of
some potential keystone taxa has been identified, e.g., nitrogen-
fixing bacteria (Tyson et al., 2005), for most network hubs
there is no known keystone function (Steele et al., 2011; Bissett
et al., 2013). Thus the phytoplankton, where growth-promoting
factors and relationships with other microbes are relatively
well-characterized, represent an ideal model system in which
to explore the biological interactions that underlie association
networks during pulse disturbances.

USING STORMS TO EXPLORE
DISTURBANCE PROPAGATION

Storms represent complex, pulse disturbances that integrate both
natural and human impacts. Storm-driven rain and wind events
increase turbidity and introduce nutrients, organic material, and
microbes from both the benthos and land into aquatic systems;
while anthropogenic activity increases nutrient fluxes, impacts
the timing of freshwater inputs, and contributes other chemical
pollutants. Thus storms aremulti-faceted disturbances; yet, unlike
some discrete disturbances (e.g., Deepwater Horizon oil spill),
they occur frequently enough to allow comparison across different
storms, environments, and microbial communities (Berga et al.,
2012; Yeo et al., 2013). Here we use storms as a model disturbance
to explore using association networks to track the propagation of
disturbance through the microbial community.

To investigate this concept further, we will follow the
progression of storm-mediated impacts on a simplified microbial
community association network where an alga serves as a
keystone microbe and a network hub. In our model system
(Figure 1), the major storm impact is an increase in nutrients
(Iluz et al., 2009; Johnson et al., 2013); and the first microbial
community responder is the keystone algal OTU, which is
positively correlated with nutrient levels. Using association
networks prepared from non-disturbance data (Figures 1A,B),
we can infer which other OTUs are likely to respond to a
change in algal abundance. With high resolution post-storm
sampling, we can observe changes in OTUs correlated with the
early responders, as shown by lines (edges) connecting these
taxa to the alga, which should exhibit changes in activity or
relative abundance at intermediate time points if that OTU is
dependent on the alga, e.g., throughmetabolism of photosynthate
(Figures 1C,D: yellow circles). At still later time points, the
disturbance may propagate to taxa which interact with the
yellow OTUs (Figure 1D: green circles). Alternately, at this
same time point, OTUs with inferred relationships with the
alga, but utilizing detritus associated with bloom termination
rather than photosynthate from active algal cells may exhibit
increases in relative abundance (Figures 1C,D: green circle;
Teeling et al., 2012). Thus network-based approaches can offer
biological insights into phytoplankton-bacterial interactions, the
propagation and persistence of disturbance (Figure 1), and
community stability (Carpenter et al., 2011; Veraart et al., 2012).
Even anecdotal observations of howOTUs respond to disturbance
can generate hypotheses that can be verified usingmore controlled
laboratory or manipulation experiments.

Here, we have presented a cartoon storm as a pulse of
nutrients, in reality storms and other ecological disturbances
are complex. In addition to nutrients, storms introduce human
pollutants into aquatic ecosystems, including pesticides, oil,
untreated human waste, etc., that will have direct and interaction-
mediated effects on the microbial community. Unlike our simple
example in Figure 1, there may be multiple, competing impacts
on our keystone algal OTU. For example, chemical herbicides
such as atrazine impact phytoplankton due to the conservation
of photosystem II between cyanobacteria, algae, and plants
(Huber, 1993). While, the specific impacts of most chemicals
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FIGURE 1 | Schematic for tracking disturbance transmission through a microbial community. (A) Repeated community observations pre-disturbance are
used to develop (B) a correlation-based association network for the microbial community. The circles represent operational taxonomic units (OTUs), with the
keystone algal OTU denoted with an A, the diamond represents nutrients and is labeled with an N, solid lines connecting shapes indicate statistically significant
positive correlations and dashed lines negative correlations between the connected taxa or environmental parameters. The same environment is intensively sampled
following a storm to track short-term alterations in environmental variables and community composition. (C) The post-disturbance community composition from three
time periods is overlaid onto the interaction network to track the propagation of disturbance through the community: the red coloring indicates the changes directly
following the storm: an increase in nutrients and shortly thereafter increased algal abundance. Yellow coloring indicates OTUs which display relative abundance
changes at the second time point following disturbance and green those OTUs which change in relative abundance in the final period. (D) Arrows indicate the
direction of inferred disturbance propagation through the network based on the timing of observed changes in OTU relative abundance.

are correlated with concentration; another herbicide class of
synthetic auxins (e.g., 2,4-dichlorophenoxyacetic acid) is toxic
to cyanobacteria at high concentrations but stimulates growth
at lower levels (Mishra and Pandey, 1989), a subtlety which is
not readily incorporated into association networks. Among other
anthropogenic pollutants, fungicides are generally less specific
than herbicides, targeting highly-conserved cellular processes
such as respiration and thus directly affect a range of microbes
(Casida, 2009; Yang et al., 2011). Thus, along with nutrients,
storms introduce a cocktail of chemicals to aquatic environments,
complicating evaluation of direct and indirect community effects
on the microbial community.

CONCLUSIONS

Here, we discuss the potential for association networks to track
the propagation and persistence of disturbance in a microbial
community. We have identified two major opportunities afforded
by this approach: (1) to quantify the importance of interactions
in a microbial community’s response to disturbance and (2)
to generate biological hypotheses about the network’s inferred
interactions. However, a major challenge of this approach is
that to characterize a microbial community’s resistance and
resilience we first need to understand disturbance-independent
microbial community dynamics (Shade et al., 2012), suggesting
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the need for long-term monitoring of key study sites. Although
the vast amounts of data required can appear daunting, specific
taxa have been shown to repeatedly respond to storms (Jones
et al., 2008) and the field is beginning to identify general
characteristics of disturbance-responsive organisms (Shade et al.,
2014), suggesting that there are conserved rules that govern
microbial communities’ disturbance responses. However, to
tease apart the effects of factors that tend to co-vary in the
environment, for example, separating the stimulatory effects of
increasing nitrogen versus organic carbon, there is an additional
role for controlled, replicated manipulations of natural aquatic
communities. Beyond community changes, these experiments
will also provide predictions about the alteration and restoration
of ecosystem function following a disturbance, either by linking

specific taxa to functions or by identifying the types of
disturbance whichmay bemost likely to disrupt specific processes
(Amend et al., 2015). An association network-based approach to
analyzing microbial community disturbances and experimental
manipulations will provide a basis to mechanistically predict
community response to both pulse and press environmental
changes.
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