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Annual community patterns are driven by seasonal
switching between closely related marine bacteria
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Marine microbes exhibit seasonal cycles in community composition, yet the key drivers of these
patterns and microbial population fidelity to specific environmental conditions remain to be
determined. To begin addressing these questions, we characterized microbial dynamics weekly for
3 years at a temperate, coastal site with dramatic environmental seasonality. This high-resolution time
series reveals that changes in microbial community composition are not continuous; over the
duration of the time series, the community instead resolves into distinct summer and winter profiles
with rapid spring and fall transitions between these states. Here, we show that these community
shifts involve switching between closely related strains that exhibit either summer or winter
preferences. Moreover, taxa repeat this process annually in both this and another temperate coastal
time series, suggesting that this phenomenon may be widespread in marine ecosystems. To address
potential biogeochemical impacts of these community changes, PICRUSt-based metagenomes
predict seasonality in transporters, photosynthetic proteins, peptidases and carbohydrate metabolic
pathways in spite of closely related summer- and winter-associated taxa. Thus, even small
temperature shifts, such as those predicted by climate change models, could affect both the

structure and function of marine ecosystems.
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Introduction

Planktonic microbes dominate the biomass and
biogeochemical cycles in the world’s oceans.
Although a number of environmental variables have
been shown to affect microbial communities, the
field lacks consensus on how strongly these envir-
onmental factors influence community assembly
(Nemergut et al., 2013). Moreover, quantifying the
relative importance of environmental selection,
stochasticity, dispersal, evolution and predation in
shaping microbial community composition is essen-
tial to predicting ecosystem responses to environ-
mental alterations including climate change (Doney
et al., 2012). Here, we focus on the impact of
environmental selection on marine microbiomes.
Yet, identifying key variables through observational
sampling is complicated by a number of factors,
including covariation of environmental variables (for
example, temperature, light and day length; Gilbert

Correspondence: DE Hunt, Marine Laboratory, Division of Marine
Science and Conservation, Duke University, 135 Duke Marine Lab
Road, Beaufort, NC 28516, USA.

E-mail: dana.hunt@duke.edu

*These authors contributed equally to this work.

Received 19 August 2016; revised 7 December 2016; accepted
23 December 2016

et al., 2012; Yung et al., 2015), stochastic effects
(Baltar et al., 2015), geographic differences in
communities and responses and ecological diver-
gence in closely related microbes (Johnson et al.,
2006; Hunt et al., 2008; Yung et al., 2015). Despite
these challenges, there is general agreement that
bacterioplankton respond to physical conditions (for
example, temperature, salinity), resource availability
(for example, nutrients, organic matter) and interac-
tions with other organisms (Fuhrman et al., 2006;
Steele et al., 2011; Gilbert et al., 2012; Gifford et al.,
2014; Hunt and Ward 2015; Salter et al., 2015; Yung
et al., 2015). However, differentiating between
potential community drivers requires well-resolved
environment and microbial community characteri-
zation to tease apart relationships between phylo-
geny, community and environment.

With the growing evidence of global climate
change’s impacts on marine ecosystems, there is
increasing urgency to mechanistically link the
impact of environmental changes on microbial
populations and their biogeochemical processes.
Culture-based and modeling studies have primarily
focused on potential shifts in the types, geographic
range and productivity of phytoplankton, due to
their importance in biogeochemical cycling (Thomas
et al., 2012; Dutkiewicz et al., 2013). Yet, to fully
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understand the ecological and biogeochemical impli-
cations of climate change, we must consider climatic
influences on the diversity and activity of the entire
marine microbiome. Compared with phytoplankton,
predicting bacterial responses to environmental
changes is complicated by the wide range of
substrates used by heterotrophic bacteria and differ-
ent functional roles for even very closely related
bacteria (Kashtan et al., 2014; Yawata et al., 2014).
To gain insight into how future climate conditions
might affect microbial community structure and
function, we characterize the microbiome of a
coastal marine ecosystem with large seasonal
changes in temperature and other environmental
parameters.

High-resolution, long-term time series can track
microbial responses to environmental changes as
they span the range of seasonal and episodic
environmental conditions. In contrast with monthly
oceanographic measurements or single research
cruises, they can better follow both environmental
variables and microbial community composition
over time to capture time-lagged responses, resolve
within-season dynamics, identify rare events and
situate these disturbances into annual cycles and
long-term climatic trends (Gilbert et al, 2012;
Needham et al., 2013; El-Swais et al., 2015; Hunt
and Ward, 2015; Lindh et al., 2015; Teeling et al.,
2016). Here, we examine weekly changes in the
bacterioplankton community at a temperate coastal
site to identify the key environmental drivers that
shape microbial communities. With both high-
resolution (weekly) sampling and several years of
observations, this data set is well-positioned to
examine the drivers and mechanisms underlying
annual cycles in bacterial community composition.

Materials and methods

Environmental sampling

The samples were collected at the Pivers Island
Coastal Observatory (PICO) site (34.7181°N
76.6707 °W) near the Beaufort Inlet (US East Coast;
Supplementary Figure S1A) weekly from January
2011 to December 2013. Seawater was collected at
1030h local time using a 5 liter Niskin bottle
centered at 1 m or a peristaltic pump with the tubing
open at 1m and processed within 1h. Methods for
determination of surface water temperature, pH,
salinity, dissolved inorganic nutrient concentrations,
chlorophyll a concentration and bacterioplankton
and phytoplankton abundances were described pre-
viously (Hunt et al., 2013; Johnson et al., 2013).

DNA extraction and sequencing

Microbial biomass was collected by filtering ~ 1 liter
of seawater through a 0.22-micron Sterivex filter
(Millipore, Darmstadt, Germany) and the filters were
stored at — 80 °C until extraction. Nucleic acids were
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extracted as described previously (Massana et al.,
1997), with some modifications. In brief, the cells were
lysed by bead-beating on ice three times for 30s in
lysis solution (0.75M sucrose, 40 mM EDTA, 50 mm
Tris pH 8.0), followed by consecutive incubations
with lysozyme (60 mgml~*; 37 °C) and SDS (1%; 55°
C). DNA was purified by phenol-chloroform extrac-
tion, RNase treatment, isopropanol precipitation and
PCR inhibitor removal (Zymo, Irvine, CA, USA). DNA
concentration was measured using a NanoDrop
ND-1000.

Microbial communities were characterized using a
dual index amplicon library approach targeting the
16S rRNA gene V3-V4 region (Kozich et al., 2013;
Yung et al., 2016). PCR reactions contained 20 ng of
template gDNA and 0.4 U of Q5 DNA polymerase
(NEB, Ipswich, MA, USA) as well as a final
concentration of 200 um dNTPs, 2mm MgCl, and
0.5 um of each primer. PCR reactions were thermo-
cycled using the following protocol: 98 °C for 30s;
and 28 cycles at 98 °C for 10 s, 55 °C for 30 s and 72 °
C for 30s; with a final extension at 72 °C for 2 min.
Triplicate reactions per sample were pooled and gel-
purified. In total, 151 libraries were paired-end
(2x250bp) sequenced on the MiSeq (llumina,
San Diego, CA, USA) at Duke’s Genome Sequencing
and Analysis Core Facility.

Sequence processing

Sequences were demultiplexed and assigned to
corresponding samples using CASAVA (Hlumina).
Sequences were processed using USEARCH v7
(Edgar, 2010). Briefly, low-quality sequence ends
were trimmed at Phred quality (Q) of 30 using a
10bp running window. Paired-end reads were
merged when reads had a >10bp overlap with no
mismatches; the resulting joined sequences were
then filtered to remove reads with expected
errors >1 or a length <400 nt. At this point, single-
ton sequences were excluded and the remaining
sequences were assigned to operational taxonomic
units (OTUs) of 98.5% pairwise identity using the
centroid-based UPARSE-OTU clustering algorithm
(Edgar, 2013), resulting in OTUs of at least 97%
similarity. Chimeras were removed at the OTU
clustering step and using ChimeraSlayer in UCHIME
(Edgar et al., 2011). OTUs occurring less than five
times in the entire data set were removed, yielding a
total of 10 290 OTUs and 3 032 382 sequences in the
weekly data set (Supplementary Table S1). Libraries
were sub-sampled to 20082 reads per library and
corrected for rRNA gene operon number using rrnDB
(Stoddard et al., 2014), then normalized by the total
prokaryotic cell counts as measured using flow
cytometry to account for seasonal patterns in cell
abundances (Alonso-Sdez et al.,, 2015). Although
libraries contain plastid sequences that are not
included in the cell counts, these sequences com-
prise an average of 12% of total reads and, therefore,
their inclusion is unlikely to substantially alter



the observed patterns in microbial community
dynamics. The inverse Simpson’s diversity index
was computed using the ‘vegan’ R package (Oksanen
et al., 2013), and a Loess-smoothed curve (span=
0.75) was used to show trends in diversity.

Characterization of the microbial community
Canonical correspondence analysis (CCA; ter Braak
and Verdonschot, 1995) was used to visualize the
temporal dynamics of the microbial community and
to identify the environmental and biological factors
that were most closely associated with composi-
tional changes. Although the environmental variable
data set was largely complete, missing data points
(<1% of metadata) were replaced with the average
value observed in the time series. Microbial commu-
nities were related to a constrained set of environ-
mental and biological variables wusing CCA
implemented in the vegan package (Oksanen et al.,
2013). The constrained parameter set was deter-
mined by performing a stepwise selection (Akaike
information criterion, 999 permutations per step)
using the ‘step’ function in vegan. Synchronous
dynamics in the 100 most abundant OTUs, which
comprise 68% of total reads, were revealed using soft
clustering with Mfuzz (Kumar and Futschik, 2007).
The number of clusters was set to 10 and the fuzzifier
variable was set to 1.08. Of the 100 most abundant
OTUs, 99 had a membership value of at least 0.7 and
thus were assigned to clusters, and no OTUs were
assigned to multiple clusters. As bacterial taxa may
have delayed responses to different environmental
drivers, we cross-correlated the 100 most abundant
OTUs with select environmental variables (tempera-
ture, no-sky projected daily insolation, salinity,
chlorophyll @ and ammonium) for a range of lag
times using the CCF function in R.

Construction of the phylogenetic tree

The most common sequence in each of the 100 most
abundant OTUs was automatically aligned using
PyNAST, followed by manual refinement and filter-
ing to remove poorly aligned hypervariable regions
using a lane mask, to yield a 402 bp alignment of the
partial 16S rRNA gene. We then used PhyML 3.0 to
construct a maximum-likelihood tree with automatic
model selection by SMS to find the best-fit sub-
stitution model and transition/transversion ratio
(Guindon et al., 2010). The following parameter
settings were used: DNA substitution was modeled
using the GTR parameter; estimated proportion of
invariable nucleotide sites was 0.342; the gamma
shape parameter was set to 1.228; six gamma rate
categories were used and a BION] tree was initially
used and improved using nearest-neighbor inter-
change with 1000 bootstrap replicates. The taxo-
nomies of representative sequences were classified
using the RDP naive Bayesian classifier using the
Greengenes version 13.5 database.
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FPartitioning ubiquitous OTUs into sub-OTUs

We used the minimum entropy decomposition
pipeline version 2.1 (Eren et al., 2015) to partition
the 35 ubiquitous OTUs into sub-OTUs. In brief,
minimum entropy decomposition uses nucleotide
entropy along the length of the sequence reads to
differentiate genetic variation from sequence error.
The sequence reads are partitioned into sequentially
refined ‘nodes’ based on the nucleotide present in
the position with the highest entropy. This iterative
process continues until nodes achieve a minimum
entropy threshold, which was set to 0.0965. We set
the minimum substantive abundance of an oligotype
to 0.02% of the total reads to reduce noise from rare
sequences, allowed within-node variation of four
nucleotides and used default criteria for all other
parameters.

PICRUSL! predictions of marine metagenomes

The metagenome of PICO communities was pre-
dicted based on the 16S rRNA gene library composi-
tion using PICRUSt (Langille et al., 2013). In brief,
after the removal of OTUs annotated as chloroplasts
or mitochondria, the 16S rRNA gene sequences were
used for closed-reference OTU picking based on the
Greengenes v. 13.5 database using MacQIIME v.1.9.1
(Caporaso et al., 2010). The resulting OTU table was
then rarified to 19506 sequences per sample and
used to predict the genes and gene families present
in the seawater samples using PICRUSt v.1.0.0. We
calculated the weighted nearest sequenced taxon
index scores for each sample, representing the
average branch length separating an OTU from a
reference OTU (mean=0.12, s.d.=0.02). We then
collapsed the predicted KEGG Orthology into KEGG
pathways and KEGG categories and used one-way
analysis of variance with Tukey’s honest significant
difference post hoc to test the associations between
relative abundance of metagenomic functions (at
both the KEGG pathway and KEGG category level)
and seasonality (summer, winter and transitional
periods). To define summer, winter and transition
periods, we first use local regression (LOESS) to fit
smooth curves to temperature data and then calcu-
lated the rate of temperature change. We found that
most rapid temperature changes occurred between
15 and 22.5 °C. Therefore, we define seasons based
on this range, that is, summer >22.5°C,
winter <15 °C, with sampling points between 22.5
and 15°C comprising the transition periods. As
temperature fluctuates from week to week, we
differentiated summer and winter seasons when the
temperature remained in a new temperature regime
for two consecutive weeks.

Re-analysis of the Western English Channel microbial
community

The quality-filtered 16S rRNA gene sequence data
set generated by the Plymouth Marine Lab time
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series from the Western English Channel (Gilbert
et al., 2012) was downloaded from the MG-RAST
server. Sequence clustering was performed as
described above, with OTU assignment to 98.5%
pairwise identity and sequence libraries were rar-
efied to 4584 reads per library. As described
previously, Mfuzz was used for assigning the 100
most abundant OTUs to soft clusters by setting
number of clusters to 10 and the fuzzifier variable
to 1.1. OTUs were assigned to clusters to which they
had a membership value of at least 0.7; 96 OTUs met
this threshold and no OTUs were assigned to
multiple clusters.

Results and Discussion

To identify the key factors in microbial community
assembly, bacterial community composition and a
suite of environmental variables were measured
weekly for 3 years (January 2011-December 2013)
as part of the PICO (Supplementary Figure S1). The
PICO time series, located adjacent to the Beaufort
Inlet, Beaufort NC USA (34.7°N 76.7 °W), captures
the dynamics of the temperate, coastal ocean
including large seasonal changes in environmental

variables such as light, temperature and chlorophyll
a (Figure 1a; Johnson et al, 2013). This site
encompasses a larger range in environmental para-
meters than many long-term marine microbial time
series, which are located farther from the coast and
in more consistent environments (for example, North
Atlantic [HOT], Sargasso Sea [BATS], Coastal
California [SPOT], Western English Channel).
Although our site is at the mouth of an estuary and
in relatively shallow water (depth ~4.5 m), environ-
mental conditions including salinity (mean=32.69
ppt; s.d.=2.16) reflect a strong coastal ocean, rather
than estuarine signature. Nevertheless, the terrestrial
influence is evident in post-storm nutrient pulses, in
contrast with the generally low nutrients throughout
much of the year (Johnson et al., 2013).

In this dynamic coastal environment, we explored
microbial community composition by sequencing
amplicon libraries of the 16S rRNA gene V3-V4
region and clustering these sequences into OTUs of
at least 97% similarity (Edgar, 2013). As observed in
other coastal locations, the bacterioplankton is
dominated by Pelagibacteraceae (SAR11), Actino-
bacterial family OCS155 and Synechococaceae
(Gilbert et al., 2012; Chow et al., 2013) and exhibits
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Figure 1 Changes in environmental parameters and the microbial community at the Pivers Island Coastal Observatory (PICO). (a) Plot
showing water temperature (°C) and predicted blue-sky isolation (kWh m~? d~*) for weekly measurements over 3 years (January 2011—
December 2013). (b) 16S rRNA gene sequence library composition based on RDP Classifier taxonomic identification of operational
taxonomic units (OTUs; 97% sequence similarity). Taxonomy is displayed at the level of family. Families compromising less than 1% of
total relative abundance over the entire data set and OTUs that were not identified at the family level are grouped at the phylum level,
except for chloroplast sequences that are grouped at the order level. Taxonomic groups comprising an average of less than 1% relative

abundance over the entire data set are labeled as ‘Other Bacteria’.
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an annual cycle in the microbiome (Figure 1b). In
winter, the relative abundance of Pelagibacteraceae
(SAR11) increases, while the summer is enriched in
the photosynthetic Synechococaceae and eukaryotic
chloroplast sequences, as well as the Actinobacterial
family OCS155. Thus, this site exhibits a typical
coastal microbiome with seasonal patterns in both
environmental parameters and the microbial com-
munity (Figure 1).

Although the microbial community follows a
repeating annual trajectory, community change is
not continuous: winter and summer communities are
separated along the first CCA axis with a relatively
rapid transition between these two states (Figure 2;
Supplementary Figures S2 and S3b). These two
seasonal microbial communities contrast with multi-
ple distinct community states observed in other
locations (Chow et al., 2013; Gifford et al., 2014,
Alonso-Séez et al., 2015; El-Swais et al., 2015). We
may observe fewer community states in the PICO
time series due to the absence of large spring and fall
phytoplankton blooms and subsequent microbial
community succession (Needham and Fuhrman,
2016; Teeling et al., 2016). However, like other time
series, we do observe a strong annual pattern in the
bacterial community (Fuhrman et al, 2006;
Figure 2). To identify the environmental factors
driving shifts between summer and winter commu-
nities, the CCA includes a constrained set of
environmental variables determined using forward
stepwise selection (P<0.01). Even though the first
two CCA axes explain a small fraction of community
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Figure 2 Canonical correspondence analysis (CCA) biplot. CCA
relating community composition to environmental variables for
each sample from the PICO time series. The percent of variation in
the microbial community explained by each axis is indicated in
parentheses after the axis label. Environmental variables used in
the CCA are represented by vectors, labels used in the figure are
indicated by parentheses: water temperature (temperature), pro-
jected no-sky daily insolation (insolation), salinity, chlorophyll a
and ammonium (NH,). Each circle represents the microbial
community composition at a specific time point and the color
gradient indicates the year day. Environmental variables marked
with asterisks are statistically significant (P<0.001), as assessed by
the marginal effects of terms.
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variability (Figure 2), temperature, insolation and
salinity are associated with community changes
(P<0.001; Figure 2). This result mirrors that of
previous surveys that found a large ‘seasonal driver,’
which encompasses both light (day length) and water
temperature (Gilbert et al., 2012; Chow et al., 2013,
Sunagawa et al., 2015).

Based on our observations, this seasonal driver
results in rapid transitions between summer and
winter communities roughly coinciding with fall and
spring peaks in alpha diversity (Supplementary
Figure S3a). This finding contrasts with winter
diversity maxima reported in other locations
(Gilbert et al., 2012; Ladau et al., 2013), yet winter
diversity peaks may be an artifact of limited
sampling coupled with greater winter community
evenness or vertical mixing of microbes from
different water depths (Caporaso et al., 2011;
Garcia et al.,, 2015). Although annual microbiome
cycles reflect distinct summer and winter commu-
nities, the question remains: are these seasonal
differences due to changes in abundance of ubiqui-
tous taxa, or temporal partitioning of closely related
taxa within families? To investigate this idea further,
we looked at the dynamics of individual OTUs
across seasons.

Seasonal signals in individual OTUs

To understand how individual taxa rather than the
whole community respond to environmental cues,
we examined the temporal dynamics of OTUs’
absolute abundances (rRNA operon-correct library
relative abundance multiplied by total prokaryotic
cell concentrations as determined using flow cyto-
metry). Owing to the numerous biases inherent in
amplicon library preparation including DNA extrac-
tion, amplification and sequencing (Hunt and Ward,
2015), we do not interpret absolute abundances as
direct cell counts; however, this correction does
normalize for the roughly five-fold seasonal change
in the total prokaryotic cell concentration
(Supplementary Figure S4). Visual inspection of an
OTU heat map reveals a clear pattern across the
microbial community: most taxa are strongly asso-
ciated with either the summer or winter (Figure 3a).
In contrast to recent research, which argues that
many functionally redundant taxa can occupy a
specific environmental niche (Louca et al., 2016),
here we observe consistent taxa seasonally reoccur-
ring over the 3 years of the study at this single site.
To determine the extent of temporal niche partition-
ing, we used an unsupervised approach, using soft
clustering to assign the 100 most abundant OTUs to
10 clusters. These clusters reflect differences in both
temporal patterns and absolute abundance (Figure
3b—e). On the basis of visual similarities in temporal
patterns, we then combined these clusters into four
groups: ubiquitous, episodic, summer-associated and
winter-associated (Figure 3). In this analysis, we
observe OTUs present throughout the time series at
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relatively high absolute abundance (ubiquitous
group: clusters 8 and 9; Figure 3d), including a
number of OTUs belonging to the SAR11 clade. The
episodic group (cluster 10) also exhibits a phyloge-
netic signal as both OTUs are identified as Strame-
nopile chloroplasts; these algal sequences display
concordant dynamics that are not aligned along a
seasonal axis but anecdotally appear to increase
following storms (Hunt and Ward, 2015). Yet,
seasonal association is the dominant pattern in this
environment, as 62 of the 100 most abundant OTUs
peak in either the winter or summer. This season-
ality is much higher than observed in previous
studies that classified between 10 and 30% of OTUs
as seasonally associated (Chow et al., 2013; Alonso-
Sdez et al., 2015). This strong seasonality could
reflect methodological approaches: soft clustering,
more frequent sampling and greater sequencing
depth. Alternatively, PICO microbes may experience
stronger environmental filtering due to large changes
in environmental parameters. However, replicating
this analysis using microbial communities from the
Western English Channel again reveals strong seaso-
nal associations (82 of the 100 most abundant OTUs),
despite decreased sampling resolution, sequencing
depth and the range of environmental variables
(Supplementary Figure S5), suggesting that season-
ality may be more readily detected using soft
clustering compared with other approaches. Yet, in
spite of strong seasonal associations at PICO, clusters
exhibit slightly different patterns within seasonal
groups; while some seasonally associated taxa are
absent in the non-preferred season, others are
detectable throughout the year. For example, cluster
4 is most abundant in the summer but is still
observed at lower abundances in the winter
(Figure 3b). Thus, although most OTUs exhibit
strong seasonal preferences, these organisms may
either be able to survive the wide range of environ-
mental conditions that occur over the annual cycle
or potentially exhibit sub-OTU seasonal partitioning.

For ubiquitous OTUs (Figure 3d), we investigated
potential seasonal partitioning at the sub-OTU level
to determine whether these taxa are likely to be
generalists or instead partition resources at a finer
scale. Fourteen of the OTUs in the ubiquitous group
belong to the family Pelagibacteraceae, which has
been previously shown to exhibit fine-scale ecologi-
cal specialization (Eren et al., 2013); but sub-OTU
habitat specialization may be common in the
bacterioplankton (Yung et al., 2015). To test this
hypothesis, we used minimum entropy decomposi-
tion (Eren et al., 2015) to examine potential sub-OTU
temporal specialization in apparently ‘ubiquitous’
OTUs using soft clustering (Supplementary
Figure S6). Although the majority of sub-OTUs did
not exhibit seasonal patterns, 41% were assigned to
either summer- or winter-peaking clusters
(Supplementary Table S2). These seasonally asso-
ciated sub-OTUs are observed in a wide range
of phylogenetic groups including SAR11,
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Synechococcaceae, Halomonadaceae, Flavobacteria-
ceae, OCS155 and Rhodobacteraceae, suggesting that
sub-OTU seasonal patterns are a common feature in
marine microbes (Johnson et al., 2006; Kashtan et al.,
2014; Yung et al., 2015; Larkin et al., 2016). As
seasonal pattern detection is limited by the phylo-
genetic resolution of the 16S rRNA gene, seasonal
affiliation may be more widespread in the bacter-
ioplankton than can be discerned using 16S rRNA
gene libraries.

The persistence of many bacterial families
throughout the year while individual OTUs or sub-
OTUs are seasonally associated suggests that clades
within a family might have similar ecological roles in
summer and winter (Hunt et al., 2008; Yung et al.,
2015) and is consistent with phylogenetic conserva-
tion of metabolic capabilities (Martiny et al., 2015).
Further supporting this idea, with the exception of
the ubiquitous SAR11 and the episodic algal OTUs,
seasonal clusters are interspersed throughout a 16S
rRNA gene phylogenetic tree (Figure 4a), where
previously seasonal patterns were observed only in
specific taxonomic groups (Alonso-Sédez et al., 2015).
In our data, moreover, we see potential for closely
related strains to temporally partition resources
(Figure 4b—d). For example, two OTUs within the
family Rhodobacteraceae appear to trade off: the
dominant OTU within the genus Octadecabacter
(OTU 6) and a Phaeobacter-like genus (OTU 7)
alternate in dominance over seasonal cycles (Figure
4d). The Octadecabacter OTU peaks in the winter,
whereas the Phaeobacter-like OTU exhibits highest
absolute abundances in late summer, suggesting
seasonal resource partitioning within bacterial
families. As similar patterns were observed in a
number of taxa (Figure 4b-d), temporal resource
partitioning between closely related taxa appears to
be a common phenomenon in the bacterioplankton.
Although these taxa have different seasonal prefer-
ences, they may either fulfill equivalent biogeochem-
ical functional roles or alternately could differ
functionally on other ecological axes (Kashtan
et al., 2014).

Seasonal changes in predicted function

With this seasonal switching between closely related
taxa, we now ask whether summer and winter
communities are largely functionally redundant or
alternately whether seasonal environmental condi-
tions select for distinct functions. To investigate
potential biogeochemical implications of this seaso-
nal OTU switching, we predict the functional
capacity of the summer- and winter-associated
microbial communities using existing genomes
(Langille et al., 2013). Although this technique is
limited by the ability of 16S rRNA gene sequences to
resolve ecologically important units and the phylo-
genetic breadth and depth of marine microbial
genomes, metagenomic prediction may nevertheless
offer insight into the extent of both functional
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(OTU 7).

redundancy and differences in biogeochemical
potential (but not rates) between the summer and
winter communities (Hunt et al., 2013). Over the 3
years of observation, the dominant KEGG categories
are relatively consistent (Supplementary Figure S7);
however, summer- and winter-predicted metagen-
omes are statistically different (ANOSIM, P<0.001).
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Thus seasonal changes alter apparent biogeochemical
potential in the coastal ocean in spite of apparent
replacement by closely related strains. In fact, more
than half of the KEGG categories adopt a
seasonal pattern (analysis of variance, Tukey’s test,
P<0.0001), including biogeochemically important
functions: energy metabolism (summer peak),



membrane transport (winter peak), metabolism of
cofactors and vitamins (winter peak) and carbohy-
drate metabolism (winter peak; Supplementary
Figure S8). These seasonal predicted gene abun-
dance patterns likely indicate changes in organic
matter sources: summer increases in photosyn-
thetic genes suggest production of labile carbon
while the winter’s more recalcitrant carbon may
require additional transporters and carbohydrate
degradation genes (Gifford et al., 2014; Sharma
et al., 2014). Thus, although summer and winter
PICO communities contain largely overlapping
functions, seasonal changes in microbial commu-
nities alter predicted community metabolic
potential.

Environmental drivers of microbiomes

In this study, we observe dramatic seasonal shifts in
the microbial community, the abundance of specific
OTUs as well as the metabolic potential. We propose
two possible drivers for these repeated, seasonal
environmental transitions: (i) microbial communities
assemble based on the persistence of key environ-
mental variables or (ii) that a keystone organism(s)
changes in abundance or activity, likely due to an
environmental factor, and triggers a community-
wide change mediated by interactions (Hunt and
Ward, 2015; Needham and Fuhrman, 2016). We
focus on potential environmental drivers, as even an
interaction-driven transition requires a seasonally
sensitive keystone organism. Given the significance
of both temperature and light for community
composition in this and other locations (Figure 2;
Supplementary Table S3), we predict that these
variables are the primary drivers of the microbiome’s
seasonality (Supplementary Figure S2). Observa-
tional data is often poorly suited to separate the
impacts of correlated environmental variables; how-
ever, cross-correlation analysis indicates seasonal
OTUs exhibit stronger correlations and a shorter
response lag with temperature compared to light
(Supplementary Table S3). Further supporting the
importance of temperature over light, the timing of
cluster transitions varies on a yearly basis, for
example, persistent cool weather in spring 2013
delayed seasonal warming and the appearance of
summer-associated OTUs, indicating that tempera-
ture is likely to be the proximal driver of seasonal
microbial community switching. While light is
important for phytoplankton, which could serve as
keystone microbes (Hunt and Ward, 2015, Needham
and Fuhrman, 2016), temperature has the potential
to directly impact the metabolic kinetics of all
organisms (Brown et al., 2004). Thus, several lines
of evidence point to temperature as the key driver of
these community transitions, suggesting seasonal
switching may be widespread in temperate regions
of the world’s oceans. Although temperature is
consistently an important factor in determining
microbial composition across a range of studies
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(Fuhrman et al., 2006, 2008; Johnson et al., 2006,
Shade et al., 2010; Yung et al., 2015), this predomi-
nance of seasonal OTUs and repeated annual
transitions at the OTU level have not been pre-
viously shown. Although a recent
high-resolution (daily) study observed stronger
correlations between specific phytoplankton and
prokaryotic taxa than with environmental variables
(Needham and Fuhrman, 2016), these short-term
bloom successions are likely responding to different
drivers (for example, DOM composition and nutri-
ents) than those forcing the annual cycles we
emphasize here. We previously speculated that
OTU transitions might be less pronounced at loca-
tions with lower annual temperature ranges, com-
pared with ~20°C at the PICO study site. However,
we observe similar summer- and winter-associated
taxa at the Western Channel Observatory
(Supplementary Figure S5), which has an annual
temperature range of ~10°C (Gilbert et al., 2012),
suggesting that the persistence of a given environ-
mental condition (Supplementary Figure S1b) may
be more important than a specific temperature
threshold.

Conclusions

Observations are one of the primary methods that
scientists use to predict the ecologies of the largely
uncultured microbial inhabitants of the world’s
oceans, yet the challenge is to link these observations
to specific environmental drivers. Here we show that a
dynamic microbial community inhabiting a temperate
site exhibits winter and summer assemblages. On
closer examination, community changes are mediated
by switches between closely related taxa, suggesting
that OTU-level differences in environmental prefer-
ences, most likely temperature-related, are responsible
for seasonal cycles at the community level. Using 16S
rRNA-based metagenome predictions reveals seasonal
patterns in the predicted genome content. The ques-
tion remains whether these predicted gene content
changes are due to temperature preferences or the
ability to degrade organic material where seasonal
changes in composition is dependent on organic
material, or perhaps co-selection of community
members based on these two factors. The occurrence
of temperature-mediated state changes has important
implications for predicting microbial responses to
future climate conditions: temperature changes result
in dramatic responses in the microbiome that appar-
ently influence biogeochemical potential.

Data deposition
Sequences reported in this paper have been sub-
mitted to the GenBank Sequence Read Archive
under Bioproject #PRJNA309156. Oceanographic
metadata are available at BCO-DMO under
Project #2281.
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